Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasite Epidemiol Control ; 24: e00338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323192

ABSTRACT

Dengue viruses are a significant global health concern, causing millions of infections annually and putting approximately half of the world's population at risk, as reported by the World Health Organization (WHO). Understanding the spatial and temporal patterns of dengue virus spread is crucial for effective prevention of future outbreaks. By investigating these patterns, targeted dengue surveillance and control measures can be improved, aiding in the management of outbreaks in dengue-affected regions. Curaçao, where dengue is endemic, has experienced frequent outbreaks over the past 25 years. To examine the spatial and temporal trends of dengue outbreaks in Curaçao, this study employs an interdisciplinary and multi-method approach. Data on >6500 cases of dengue infections in Curaçao between the years 1995 and 2016 were used. Temporal and spatial statistics were applied. The Moran's I index identified the presence of spatial autocorrelation for incident locations, allowing us to reject the null hypothesis of spatial randomness. The majority of cases were recorded in highly populated areas and a relationship was observed between population density and dengue cases. Temporal analysis demonstrated that cases mostly occurred from October to January, during the rainy season. Lower average temperatures, higher precipitation and a lower sea surface temperature appear to be related to an increase in dengue cases. This effect has a direct link to La Niña episodes, which is the cooling phase of El Niño Southern Oscillation. The spatial and temporal analyses conducted in this study are fundamental to understanding the timing and locations of outbreaks, and ultimately improving dengue outbreak management.

2.
PLoS One ; 16(3): e0248261, 2021.
Article in English | MEDLINE | ID: mdl-33788845

ABSTRACT

The interpretation of archaeological features often requires a combined methodological approach in order to make the most of the material record, particularly from sites where this may be limited. In practice, this requires the consultation of different sources of information in order to cross validate findings and combat issues of ambiguity and equifinality. However, the application of a multiproxy approach often generates incompatible data, and might therefore still provide ambiguous results. This paper explores the potential of a simple digital framework to increase the explanatory power of multiproxy data by enabling the incorporation of incompatible, ambiguous datasets in a single model. In order to achieve this, Bayesian confirmation was used in combination with decision trees. The results of phytolith and geochemical analyses carried out on soil samples from ephemeral sites in Jordan are used here as a case study. The combination of the two datasets as part of a single model enabled us to refine the initial interpretation of the use of space at the archaeological sites by providing an alternative identification for certain activity areas. The potential applications of this model are much broader, as it can also help researchers in other domains reach an integrated interpretation of analysis results by combining different datasets.


Subject(s)
Archaeology , Bayes Theorem , Machine Learning , Algorithms , Archaeology/methods , Geology , Plants/chemistry , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...